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Standard indexes of segregation measure a sample’s distance from evenness, which occurs when
each sample unit {c.g.. an occupation) has the population share of both the minority and majority
groups. We show that random allocation of individuals to units generates substantial unevenness
among small units and hence that standard segregation indexes reflect random allocation as well
as systematic group segregation. We then modify two popular indexes so that they measure devia-
tions from random allocation rather than deviations from evenness. An empirical example suggests
that these modified indexes provide improved measures of the systematic component of group

segregation.
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Economists and other social scientists often assess the
extent to which demographic groups are segregated from
each other. Examples of such interest include the extent to
which blacks and whites reside in the same area (Tacuber
and Taeuber 1965; Massey and Denton 1988; Harrison and
Weinberg 1992). the extent to which men and women share
the same occupations and establishments (Bergmann 1986;
Johnson and Solon 1986; Blau 1988; Groshen 1991; Car-
rington and Troske 1993), and the extent to which high- and
low-skill workers share the same firms (Kremer and Maskin
1994). Analysts often summarize these patterns with seg-
regation indexes such as the index of dissimilarity and the
Gini coefficient of segregation. These indexes measure the
extent to which the distribution of two groups (e.g.. men
and women, blacks and whites) across units (e.g.. occupa-
tions or census tracts) deviates from an even distribution
in which each group is proportionately represented in each
unit. The indexes typically range from O to 1, with O rep-
resenting complete evenness and 1 representing complete
unevenness in which groups never share the same unit.

An important problem with these indexes is that they
can be positive when workers are allocated randomly across
units. This occurs for two reasons. First, there is sometimes
a simple integer constraint in that each individual must be
uniquely allocated to one unit. In a sample with 10 black
workers and 20 firms. for example, evenness is unobtain-
able because it is impossible for each firm to get one half of
a black worker. Second, the random allocation of individ-
uals to units will typically generate some deviation from
evenness. To see this clearly, consider a large sample of
two-person firms that, in aggregate. employ a 50/50 mix
of men and women. Random allocation of workers to firms
will result in 25% of the firms employing two men, 50% of
the tirms employing one man and one woman, and 25% of
the firms employing two women. Existing segregation in-
dexes would report substantial segregation in this instance.

This is problematic for two reasons. First, analysts often
interpret positive segregation indexes as evidence of dis-

crimination or other systematic phenomena, though some-
times the observed patterns are completely consistent with
random allocation. Second, samples with high segregation
indexes are viewed as more systematically segregated than
samples with low index values. Yet such conclusions are
valid only if random unevenness is constant across sam-
ples. Unfortunately, this is often not the case. In samples
with small units and small minority shares, random alloca-
tion implies substantial unevenness. and hence substantial
segregation as measured by conventional indexes. In con-
trast, random allocation generates little unevenness in sam-
ples with large units and large minority shares. Because unit
sizes and minority shares often vary. cross-sample compar-
isons of conventional indexes sometimes tell us little about
the samples” relative degree of systematic segregation.

In an effort to address this problem. this article devel-
ops two indexes of systematic segregation that measure a
sample’s distance from randomness rather than its distance
from evenness. Our emphasis on randomness as the appro-
priate baseline is consistent with the previous work of Blau
(1977), Boisso, Hayes, Hirschberg, and Silber (1994). and
Ransom (1995), all of whom developed statistical tests of
the random-allocation hypothesis rather than the hypothe-
sis of evenness. The contribution of our article is to de-
velop methods that measure a sample’s economic distance
from randomness rather than just its statistical distance. Of
course, both economic and statistical distances are impor-
tant. In conjunction with the test procedures derived by the
preceding authors, our indexes of systematic segregation al-
low a more informative view of empirical segregation pat-
terns. In addition, our indexes impose little computational
burden because they require no computations other than
those required by the hypothesis tests proposed by Boisso
et al. (1994).
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The article proceeds as follows. Section 1 describes sev-
eral popular segregation indexes and illustrates their small-
unit properties. Section 2 reviews the literature on segrega-
tion and points out when small-unit issues are and are not
important. Section 3 proposes new methods for measuring
and interpreting segregation in small-unit samples. Section
4 then applies the new methods to the measurement of racial
and gender workplace segregation. The results suggest that
the new indexes produce different, and we believe better,
interpretations of the data. More substantively, the results
show that racial and gender workplace segregation is more
prevalent than a random-allocation model would suggest.

1. RANDOM UNEVENNESS AND CONVENTIONAL
SEGREGATION INDEXES

The following discussion will take “random allocation”
or “randomness” to imply the urn model of statistical the-
ory. Within units of any given size, the random allocation
of a finite population leads to a hypergeometric distribu-
tion of minorities (and majorities) across units. In cases in
which the population is large relative to each unit, the hy-
pergeometric can be closely approximated by the binomial
distribution. The binomial density function is of the form

< I':) )]}”I(yl _1))1_'.s--m]

forall m=0,1,...,: g, 1 (1)

B(m;s,p) =

where p = the minority’s population share, s = unit size,
and m = number of minorities in the unit. The binomial pre-
dicts that minority shares (m/s) will be distributed across
units with a mean of p and a variance of p(1 — p)/s. This
implies that there will be substantial variance in small units’
minority share but that the minority-share distribution col-
lapses to p as units get large. This is important because
all segregation indexes map interunit dispersion in minor-
ity shares into scalar indexes.

We now illustrate these properties in two popular segre-
gation indexes. In interpreting these indexes, it is helpful to
think of the segregation curve (Duncan and Duncan 1955;
Hutchens 1991). If we first sort the units by increasing mi-
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Figure 1. Segregation Curves: An Example.
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nority share, then the segregation curve plots the cumulative
fraction of majority workers on the x axis and the cumu-
lative fraction of minority workers on the y axis. Figure 1
plots a hypothetical segregation curve along with the 45-
degree diagonal of evenness that results from a perfectly
even distribution of minorities across units. We now use
this construct to interpret two popular segregation indexes.

The index of dissimilarity (also known as the displace-
ment index, the segregation index, or the Duncan index) has
long been the most widely used segregation index. If we let
N = the total number of individuals in the sample, then the
index of dissimilarity is

1
D:Z5

where the summation is taken over sample units and p, s,
and m are now the sample analogs of the previously defined
population parameters. If we let f denote the empirical joint
distribution of s and m across units, then D: f — [0,1].
The dissimilarity index may be interpreted as the maximum
distance between the segregation curve and the diagonal of
evenness or as the share of the minority (or majority) group
that would have to move across units to achieve an even
distribution.

Let D*(s,p,n) be the expected dissimilarity index im-
plied by the random allocation of a population with mi-
nority share p to a sample of n units, each of which is of
size s. The inclusion of sample size (n) as an argument in
D* (s, p,n) recognizes the dependence of expected dissimi-
larity on sample size. Despite this sensitivity to sample size,
it is useful to examine the expression for D as n tends to
infinity:
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When units are small, the binomial heavily weights unrep-
resentative units, and dissimilarity is high. As unit size in-
creases, however, the binomial puts increasing weight on
even units and random dissimilarity falls. The implication
is that, for large samples, random dissimilarity is highly de-
pendent on the sample distribution of unit sizes. There is no
comparably simple expression for D*(s.p.n) for finite n,
but it is easy to simulate the distribution for fixed n, s, and
p. As it turns out, the preceding asymptotic formula appears
to be very close to the expectation of finite samples in all
cases except those in which p, s, and n are all very small.
The preceding discussion suggests that random allocation
implies some unevenness, but it does not indicate how the
dissimilarity index maps this unevenness into the [0, 1} in-
terval. To provide guidance on this issue, panel A of Table
I reports D*(s.p, 100} for various unit sizes and minority
shares. For finite samples. it is of course true that random al-
location will generate some variation in dissimilarity across
samples. Thus, the numbers in Table 1 are the means of
the dissimilarity index computed from 500 randomly allo-
cated samples. The table shows that expected dissimilarity
is highly dependent on minority share and unit size. The in-
dex’s sensitivity to unit size can be seen by looking across
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Table 1. Segregation Under Random Allocation

i Number of individuals in each unit
Minority share

of population 4 Zt 10 20 50 100 1,000

Panel A: Mean dissimilarity index under random allocation

.01 .86 .96 91 .83 61 .38 A3
.02 .96 .92 .84 .69 39 .28 .09
.05 .95 .81 .63 39 .26 18 .06
10 .90 .65 40 .29 19 13 .04
.20 .81 42 31 .22 14 .10 .03
.30 73 41 .27 19 A2 .09 .03
40 .68 35 .26 18 A1 .08 .03
.50 .66 37 .25 .18 i .08 .03

Panel B: Mean Gini coefficient under random allocation

.01 .99 .96 .92 .84 .68 52 18
.02 .98 .92 .85 73 53 .39 13
.05 .95 .83 .69 .54 35 .25 .08
.10 .90 T2 55 A1 .26 18 .06
.20 .80 .59 43 31 .20 14 .04
.30 .73 .53 .38 e 1 74 12 .04
40 .68 49 .36 .25 .16 A1 .04
50 .66 49 35 25 16 i .04

NOTE: For each combination of unit size and minority share, 500 random samples were drawn
in which each sample had 100 units. The dissimilarity index and Gini coefficient were computed
separately for each of the 500 samples, and the figures reported above are the means of these
indexes. See the text for definitions of the dissimilarity index and the Gini coefficient

the columns of any given row. For example, if we fix the
minority population share at .05, we see that mean random
dissimilarity ranges from .95 for 2-person units to .06 for
1,000-person units. The index’s sensitivity to minority share
can be seen by looking down the rows of any given column.
For example, among samples of 20-person units, mean ran-
dom dissimilarity ranges from .83 to .18 depending on the
minority’s sample share. In sum, Table | clearly shows that
random allocation can generate substantial dissimilarity.

Table 1 illustrates the impact of random allocation in
samples with uniform unit sizes, but what effect does ran-
dom allocation have in samples with a mixture of sample
sizes? To address this issue, let U,,,, = the number of sam-
ple units with 7 minorities and s individuals, and let N, =
the number of sample individuals in units of size class 5. D
can then be expressed as

NS < (s —m) m
1= —- —Ugp | ———— — — ! 4)
Z N Z 2 Ns(1—p) Ngp )

m=0 !

where the outer summation is over size classes and the inner
summation is over minority shares within size class s. Note
that, if the sample minority share p is constant across size
classes, then the interior summation is equivalent to the dis-
similarity index for any given size class. In this case, there-
fore, the dissimilarity index is simply a weighted average
of the index for each size class, where the weights are each
size class’s share of sample individuals. More generally, the
dissimilarity index is the weighted average of within-size
class dissimilarity, plus terms that account for unevenness
across size classes. Thus, samples in which small units ac-
count for a large size-weighted fraction of the sample will
have substantial random dissimilarity.

A second popular index is the Gini coefficient of segre-
gation. If there are 7" units and if we first sort the units in

Journal of Business & Economic Statistics. October 1997

ascending order of (s —m)/s, then the Gini coefficient G-
f —[0,1] can be expressed (Hutchens 1991) as

r

; .
1 s—1m m — m
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S b g
i j=i+1

N
—
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The Gini coefficient varics between 0 and 1. with 0 again
corresponding to complete evenness and 1 representing
complete segregation. The Gini coefficient may be inter-
preted as the arca between the segregation curve and the
diagonal of evenness. expressed as a proportion of the to-
tal area under the diagonal (Massey and Denton 1988). The
Gini coefficient of segregation does not lend itself to a de-
composition analogous to (4), but panel B of Table 1 shows
that the same general points still apply. Random allocation
implies relatively small index values for samples with large
units and large minority shares because the mean Gini co-
efficient generated by random allocation is only .04 among
samples with 1.000-person units and large minority shares.
For small units, however, random allocation predicts a very
high Gini coefficient. In a population of 10-person units
with a minority share of .10. for example, random alloca-
tion implies a Gini coefficient of .55. Similarly, the Gini
coefficient is expected to be above .1 even for 1,000-person
units when the minority share is .02 or below. A comparison
of panels A and B shows that the Gini coethicient is even
more sensitive to random allocation than the dissimilarity
index.

Table | has two important implications. First. analysts of-
ten interpret “large” segregation indexes as evidence of dis-
crimination or other systemaltic phenomena. When units or
minority shares are small, however, such conclusions are not
always warranted because random allocation implies sub-
stantial unevenness. Second. analysts often compare index
values across samples or subsamples and interpret higher
index values as indicative of a greater role for systematic
phenomena. Such comparisons are not generally valid, how-
ever, because Table 1 shows that the amount of unevenness
generated by random allocation is quite sensitive to unit
size and minority share. Thus. cross-sample comparisons
of these indexes are misleading unless the samples have
similar unit size distributions and minority shares. This re-
quirement is often not met in practice.

Let us conclude this section with three points. First, these
same criticisms would seem to apply to any other index of
segregation-cum-unevenness. For example, we have com-
puted tables analogous to Table | tfor Atkinson’s index and
Theil’s entropy index. and the results are quite similar (ta-
bles are available from the authors on request). Second. note
that the crucial issue here is each unit’s sample size. not its
population size. In terms of the unevenness implied by ran-
dom allocation, a sample of 10 people from each of many
large units is equivalent to having the entire population from
each of many 10-person units. Finally, note that there are
two ways in which a sample can get “large.” The first is that
the average size of units can increase. The preceding tabu-
lations show that random allocation becomes a nonissue as
units get arbitrarily large. The second is that the number of
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units can increase while the average unit size stays small,
Movements in this direction have virtually no eifect on the
amount of unevenness implied by random allocation. Even
a very large number of randomly allocated individuals will
not be evenly distributed across units if the size of each unit
stays small. Thus, simply increasing the number of sample
units is no cure for these problems unless the average unit
size also increases.

2. 1S RANDOM UNEVENNESS
EMPIRICALLY IMPORTANT?

Section I shows that random allocation generates sub-
stantial unevenness when units or minority shares are small.
This section asks whether this is an important issue in the
empirical literature. One difficulty with this assessment is
that one can often only guess about the random unevenness
expected in any given study. The problem is that. although
the minority's population share is usually reported. authors
rarely report the average unit size. let alone the tull distribu-
tion of unit sizes required to make a precise statement about
how much unevenness would be generated by random allo-
cation. Nevertheless, it is apparent that random-allocation
issues arise in a substantial subset of empirical studies of
segregation.

Segregation indexes are perhaps most commonly used in
studies of residential segregation in which the groups are
blacks and whites and the units are census tracts. These
tracts average about 4.000 residents, and Table 1 shows that
random allocation generates little unevenness in units of
this size. The fact that individuals are bunched into house-
holds. however, means that there may be substantially fewer
than 4.000 independent Jocational decisions in any census
tract. This implies that random unevenness may be substan-
tial in cases in which the minority population is small. In
addition. small-unit 1ssues certainly arise when segregation
is measured across more narrowly defined groups or geo-
graphical units. For example. Denton and Masscy (1988)
studied white/cthnic residential segregation within samples
stratified by schooling, occupation. or income. There are of-
ten fewer than 100 individuals per tract within these strata,
and our analysis suggests that 15% to 20% of their re-
ported within-group segregation is due to random alloca-
tion. Tract-level analysis of minority—minority segregation
{e.g.. black/hispanic) is similarly sensitive to these issues,
and small-unit issues will surely arise when segregation is
measured in the block-leve! data that may soon be available
(Harrison and Weinberg 1992).

Studies of gender occupational differences also use seg-
regation indexes. Small-unit issues typically do not arise
In aggregate studies of large samples such as the Decen-
nial Census. Many authors. however. consider occupational
segregation within much smaller portions of the economy
or within much smaller samples. For example. Bielby and
Baron (1984) studied occupational segregation within es-
tablishments in a sample in which there are often only
a few people employed in any particutar occupation. Ta-
ble | implies that much of the segregation in their sample
is potentially attributable to random allocation. Similarly.
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Fields and Wolf (1991) studied sex segregation across tens
of thousands of industry-by-occupation cells. Even though
their samples are quite large, the number of individuals per
unit is small enough for random allocation to play an im-
portant role. Other studies ot occupational scgregation in
which random allocation appears to be important are those
ot Wharton (1989), Groshen (1991). and Neuman (1991).

Small-unit issues also arise in studies of segreeation
across other dimensions. For example, Blau (1977} stud-
icd interfirm sex segregation within occupations in cases
in which individual firms often employed only a handful of
workers. More recently. Carrington and Troske (1995) stud-
led sex segregation in establishments with fewer than 100
employeces. and as much as 50% of their reported within-
industry segregation can be attributed to random allacation.
As another example. Hutchens (1988) studied age-group
segregation in a sample of approximately 40.000 workers
spread across over 500 mdustry-by-occupation cells. And
as a final example. conclusions about racial segregation in
professional sports are often drawn from samples in which
the average unit size is less than 50 (see Kahn 1991 for a
survey). Our analysis suggests that much of this segregation
could be due to random allocation.

Some authors explicitly note the random unevenness gen-
erated by small-unit samples. and our crude calculations
suggest that the qualitative nature of most conclusions is
insensitive to random allocation. We will subsequently doc-
ument a case. however, in which the traditional approach
finds “systematic” segregation in a case that is completely
consistent with random allocation. and there are surely
other instances of this phenomena in the literature. In ad-
dition. even in cases in which the traditional approach ap-
propriately reports systematic segregation. the quantitative
nature of the departure from randomness is often quite sen-
sitive to small-unit issues. Thus. the precise interpretution of
small-unit studies as well as the usefulness of cross-study
comparisons depend on the development of new methods
that measure departures from randomness rather than even-
ness. Section 3 takes up this issue.

3. ALTERNATIVE APPROACHES TO
MEASURING SEGREGATION

3.1 Preliminaries

This section describes alternative approaches to measur-
Ing segregation in small-unit samples. Each of these ap-
proaches requires the computation of the baseline index of
segregation that would be expected under random alloca-
tion. This expectation may be calculated by shuffling the
sample—that is, by randomly reallocating sample individ-
uals to sample units, keeping the size of the sample units
fixed. Each reshuffling produces a ditferent distribution of
minorities and majorities across units. and Gini coetficients
and indexes of dissimilarity can be computed from cach
reshuffling. This in turn generates a range ol index values
that are consistent with random allocation. The means of
these synthetic indexes provide a reasonable measure of
what should be expected under random allocation. and we
will refer to these as & (for the Gini coefficient) and D*
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(for the dissimilarity index). Of course, there will be varia-
tion around the mean across the shuffles, but, as Boisso et
al. (1994) pointed out, this variation under the null provides
a means of testing the hypothesis of random allocation.

3.2 Point Estimates

Our criticism of standard segregation indexes is that they
measure the sample’s distance from evenness rather than
randomness. In this section we propose a set of modified
segregation indexes that measure the extent to which a sam-
ple deviates from randomness. The advantage of these in-
dexes is that their interpretation does not hinge on the sam-
ple share of minorities or on the size of units in the sample.
Thus, these modified indexes provide a better means for
comparing the extent to which samples are systematically
segregated. In interpreting these indexes, it will be helpful
to refer to Figure 2. Figure 2 is analogous to Figure 1 in
that it graphs a hypothetical segregation curve and the di-
agonal of evenness. However, it also includes what we call
the curve of randomness, which is the segregation curve
that would be expected under random allocation.

Given D and D* as defined earlier, our modified index of
systematic dissimilarity D: f — [—1,1] is simply

1y DT
p — 1+
= r
D= P

D+

it > Dt
ihD-< | B

(6)

If there is excess unevenness—that is, D > D*—then
D > 0 is simply the extent to which the sample is more
dissimilar than random allocation would imply (D — D*),
expressed as a fraction of the maximum amount of such ex-
cess dissimilarity that could possibly occur (1-D*). D =1
is analogous to complete unevenness, as with the standard
dissimilarity index, but D = 0 now implies that the sam-
ple is equivalent to random allocation. If there is excess
evenness—that is, D < D*—then D is negative and repre-
sents excess evenness (D — D*), expressed as a fraction of
the maximum amount of excess evenness that could possi-
bly occur (D*).
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We also consider an analogously modified Gini coeffi-
cient of segregation, G: f — [-1,1]:

. gt d5s6" :
ded a0 Y
G~

if G-<-G".

Recall that the standard Gini coefficient is interpretable as
the area between the segregation curve and the diagonal of
evenness as a fraction of the total area under the diagonal.
Our modified Gini coefficient is then interpretable as the
area between the segregation curve and the curve of ran-
domness, expressed as a fraction of the total area under the
curve of randomness.

Several features of these indexes deserve comment. We
couch these points in terms of our modified dissimilarity
index, but they apply equally to the modified Gini coeffi-
cient. First, D — D as D* — 0. Thus, as unit size gets
large, the modified index converges to the original index.
This is appropriate because the problem that we are trying
to correct goes away as units get large. Second, the range
of D is [~1,1] rather than [0, 1]. In particular, if there is
more evenness than predicted by random allocation, then
D < D*and D < 0. Negative values of D simply indicate
excess evenness rather than excess segregation. Finally, note
that our adjustment of these segregation indexes is similar
in spirit to the index of concentration proposed by Ellison
and Glaeser (1994).

3.3 The Measurement of Uncertainty

The vast majority of segregation studies report one or
more segregation indexes without reporting any hypothesis
tests and without any indication as to how much sampling
variability might be associated with the estimates. This pat-
tern arose because of the historical lack of analytical solu-
tions for the sampling variability of these indexes. Let us
here review some of the methods recently developed in the
literature on segregation indexes.

We are aware of two methods for assessing the sampling
variability of traditional segregation indexes. First, Ransom
(1995) recently developed expressions for the asymptotic
sampling distributions of the Gini coefficient and the dis-
similarity index. Second, Boisso et al. (1994) applied stan-
dard bootstrap methods to the evaluation of segregation
indexes. These approaches are, of course, asymptotically
equivalent (Efron and Tibshirani 1993), but they will differ
to an unknown extent in finite samples. Our empirical ex-
ample will use the methods of Boisso et al. (1994) because
they are more readily adapted to our moditied indexes.

The most interesting null hypothesis is that the data are
consistent with random allocation. Ransom’s method and
the bootstrap methods ot Boisso et al. (1994) can be ex-
tended to test this or virtually any other hypothesis regard-
ing the value of segregation indexes. There are in this case
other methods available as well, however. Blau (1977) pro-
posed a chi-squared test of the equality of the empirical and
a hypothetical random distribution that is similar to the one
from which our D~ is derived. This method is computation-
ally simple, but it is less powerful than the other methods
discussed here. Finally, Boisso et al. (1994) developed a ran-
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domization test along the lines of Fisher (1935), Edgington
(1969), and Noreen (1989). In this test. many samples are
generated under the null hypothesis of random allocation,
and segregation indexes are computed for ecach sample. The
extent to which the indexes computed {rom the empirical
sample are outliers in the distribution of indexes computed
from the hypothetical samples provides a means of testing
the hypothesis of random allocation. This approach has the
virtue of making use of the hypothetical samples that were
previously used in the calculation of D* and G*. Thus, the
additional computational burden ts minimal.

4. AN APPLICATION TO WORKPLACE
SEGREGATION

Section 3 proposed two new indexes of systematic seg-
regation. In this section we apply these indexes to the mea-
surement of workplace racial segregation among manufac-
turing plants in the Chicago metropolitan statistical area
(MSA). Although our interest is primarily methodological,
this exercise is of substantive interest because taste-based
theories of labor-market discrimination (e.g., Becker 1957,
Bergmann 1986) imply that workplace segregation is virtu-
ally a prerequisite for discrimination to induce group wage
differences. As a result, precise measures of interfirm seg-
regation are important for evaluating whether or not cur-
rent labor-market discrimination is an important source of
black/white income differences.

Our sample is drawn from the Worker Establishment
Characteristics Database (WECD) more fully described by
Troske (1994). The WECD is a sample of manufacturing
workers from the 1990 Decennial Census of Population
who have been linked to information on their establishment
(i.e., their employer) drawn from the Longitudinal Research
Datafile. From the current perspective, the important fea-
ture of these data is that they tell us which workers work
in the same establishment. In the sample ultimately used
in the analysis, the unit of observation is an establishment,
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and the information on each cstablishment is simply the
number of blacks and whites it employs. We restricted the
sample to a single MSA to avoid complications associated
with the interpretation of cross-MSA segregation. We fo-
cused on the Chicago MSA in particular because it is large,
well-represented in the WECD. and has a large black pop-
ulation.

Table 2 presents our analysis of racial segregation in these
data. The five rows of Table 2 vary by the sample on which
the statistics are computed. Row 1 analyzes segregation in
the entire WECD sample, and the remaining rows analyze
segregation among workers stratified by their educational
attainment. In particular, row 2 analyzes segregation among
workers with less than a high-school diploma, row 3 work-
ers with a high-school diploma or GED, row 4 workers with
some college education, and row 5 workers with a college
or advanced degree. Within each row. we present statistics
associated with the dissimilarity index (a) and the Gini co-
efficient (b).

The columns of Table 2 vary by the statistics reported.
Column (1) reports the sample value of the traditional in-
dexes. Column (2) reports the 5th and 95th percentile of the
distribution of the traditional indexes computed from 500
bootstrap replications. In particular. each bootstrap replica-
tion is the segregation statistic computed from a pseudo-
sample generated by drawing with replacement a sample of
size N from the original sample of establishments. Thus,
this column gives an indication of the sampling variability
of the traditional indexes. Column (3} presents analogous
statistics based on the distribution of 500 randomly reshuf-
fled samples. The segregation statistics computed from
these pseudosamples provide the means for implementing
our index, as well as the randomization test proposed by
Boisso et al. (1994). Finally, column (4) presents our index
of systematic segregation.

Row | indicates that there is a substantial amount of
unevenness in the distribution of black and white work-

to Interfirm Racial Segregation in Chicago

Table 2. Systematic and Random Segregation Indexes: An Application

(2
(1) Segregation statistics (3)
Sample generated by bootstrap Segregation statistics generated (4)
value of replications by random allocation Index of
traditional 5th 95th 5th 95th systematic
Sample description Index index percentile percentile percentile  Mean percentile segregation
1. Entire sample a. Dissimilarity index .504 452 .553 313 337 .365 251
b. Gini coefficient .664 .605 714 458 488 520 344
2. Workers with less than
12 years of education a. Dissimilarity index .688 .633 757 513 .558 .615 .294
b. Gini coefficient .843 .798 .884 .688 .733 .780 411
3. Workers with exactly
12 years of education a. Dissimilarity index 615 548 .693 480 525 572 .190
b. Gini coefficient .768 .700 .831 .658 .701 741 222
4. Workers with between 13
and 15 years of education  a. Dissimilarity index .587 514 .671 .501 .540 .585 101
b. Gini coefficient 733 .658 .802 .676 J17 .756 .059
5. Workers with 16 years
or more of education a. Dissimilarity index .666 .524 .821 .655 J27 .809 —.083
.909 .813 .869 .923

b. Gini coefficient B/ .687 —.061
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ers among Chicago manufacturing establishments because
the dissimilarity index is .504 and the Gini coecfficient is
6064, The bootstrap statistics of column (2) suggest that
the 90% confidence interval for each index has a width of
about .1. Thus. the hypothesis of evenness can easily be
rejected. Column (3) indicates that a substantial amount of
this unevenness is potentially attributable to random alloca-
tion. For example. random allocation of sample workers to
sample establishments leads to an average Gini coefficient
of .4K88. The Y5th percentile of the distribution of Gini coet-
ficients computed from randomly, allocated samples {.520),
however. lies well below the observed value (.664). Thus,
we can readily reject the hypothesis that these data were
generated by random allocation as well. This leads to the
systematic Gini coefficient ol .344 reported in column (4).
This imphes that actual excess uncvenness 1s 34% of the
maximum that could possibly be observed.

In this example. what advantage do our methods offer
relative to the existing standard of reporting the traditional
index. perhaps in conjunction with the results of a test of
the hypothesis of random allocation? In terms of hypothe-
sis testing. we offer very little because we use the test of
Boisso et al. (1994). Our methods do lead to an important
difference in economic interpretation, however. In partic-
ular. the traditional method reports that the dissimilarity
index is .504, or 50% ot the maximum dissimilarity that
could be observed. This strikes the reader as being quite
segregated. In contrast, our index reports that evcess dis-
similarity 1s only 25% (.251) of the maximum excess dis-
similarity that could be observed. This 25% figure is likely
to make a much weaker unpression on the reader, and so
it should. We strongly believe that excess dissimilarity is
the interesting fact to know and thercfore that our index
provides a more informative description of the sample.

The remaining rows of Table 2 examine segregation
within schooling groups. Column (1) indicates that there
is substantial unevenness among all schooling groups. For
example, the Gini coeflicient for workers with less than
12 vears of education 1s .843, and the Gini coefficient for
college graduates 1s 817, Inspection of the Gini coeffi-
cients implied by random allocation, however, shows that
the rough equality of the traditional indexes masks an im-
portant ditference between these two groups. The hypoth-
esis of random allocation is easily rejected for high-school
dropouts, and the difference between the traditional index
(.843) and the average index among randomly allocated
samples (.733) is 41 % of the maximum such excess uneven-
ness that could possibly occur. Thus. among high-school
dropouts. workers are substantially more segregated than
random allocation would imply in both an economically
and statistically meaningful sense. Contrast this with the
results for college graduates. The college graduates’ tradi-
tional Gini coefficient 15 similar to that of the high-school
dropouts (.817 vs, .843), but for this group the high index is
completely consistent with random allocation. Indeed, there
is some evidence that college graduates are systematically
integrated.

The comparison between high-school dropouts and col-
lege graduates clearly illustrates the benefits of our meth-
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ods. Conventional indexes suggest that segregation is
equally important within these two groups, but our meth-
ods show that systematic segregation is much more per-
vasive among the dropouts. More substantively. the re-
duced systematic segregation found among college grad-
uates 1s consistent with the views of Smith and Welch
(1984), who argued that federal affirmative action policies
act more strongly on educated workers. In addition, the
theories of Becker (1957) and Bergmann (1986) suggest
that discrimination-induced group wage differences are usu-
ally accompanied by workplace segregation. Thus, these re-
sults suggest that current labor-market discrimination may
be an important factor in the reduced earnings of black
high-school dropouts; it is a less important factor in the
black/white earnings gap among coliege graduates.

The following question may occur to some readers: Why
not merely report the traditional index along with the results
of the randomization test proposed by Boisso et al. (1994)?
The answer is that, although the randomization test pro-
vides a usetul means of measuring the statistical distance
between the sample and random allocation, it does not pro-
vide a useful means of measuring the economic distance
between the two. We believe that it is important to mea-
sure both distances carefully. Although the preceding ex-
ample illustrates the real-world usefulness ot our approach,
a hypothetical example provides even clearer support tor
our view. Suppose that a very large sample of small units
yields a traditional Gini coefficient of .5 and that random
allocation implies an average Gini coefticient of .45 for this
sample. If the sample is large enough, the hypothesis of
random allocation will surely be rejected. Thus, under the
prevailing methodology, this sample would be described as
having a Gini coefficient of .5 and that random allocation is
rejected. Is this a reasonable reading of the data? We think
not. The sample is only slightly more uneven than implied
by random allocation, and thus the sample is not economi-
cally different from random allocation in an important way.
Our methods make the distinction between economic dis-
tance and statistical distance and. as McCloskey and Ziliak
(1996) recently emphasized, it is at least as important to
measure a sample’s economic distance from a point of in-
terest as il is to measure its statistical distance.

5. CONCLUSIONS

The sensitivity of indexes of segregation-cum-unevenness
to random allocation was apparently first identified by Dun-
can and Duncan (1955), and Taeuber and Tacuber (1965)
explicitly calculated the Ievel of D implied by random al-
location. Thus, it has long been recognized that random
allocation implies nonzero segregation in conventional in-
dexes. Yet Cortese. Falk. and Cohen (1976) appear to have
made the only previous attempt to address this problem.
Their proposal was to “standardize™ 2 by computing

D — D*

Zp = ———— (8)
v/ var(D)

where D* and var(D) are computed under the assumption
of random allocation. Z;

1

is best viewed as a test statistic
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for the hypothesis of random allocation, hawever, and for
this reason Cortese et al.’s index has been largely ignored
(Massey 1978). Yet we believe that Cortese et al. were on
the right track because it is necessary to control for random
deviations from evenness. We believe that our indexes do
this in a sensible way.
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